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Quantum Fluctuation in Thermal Vacuum State
for a Mesoscopic RLC Circuit
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By means of the thermal field dynamics theory invented by Takahashi and Umezawa,
we study the quantum effects of a nondissipative mesoscopic RLC circuit at a finite
temperature.
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1. INTRODUCTION

Owing to the rapid development of nanometer techniques and microelec-
tronics, the miniaturization of integrated circuits and components is going toward
the atomic scale. Clearly, when the charge-carrier inelastic coherence length and
the charge-carrier confinement dimension approach the Fermi wavelength, the
classical physics is expected to be invalid and quantum effects must be taken
into account. The quantum effects for a single LC lossless circuit was first dis-
cussed by Louisell (1973). Following a similar line of thougth, many authors
have discussed the quantum effects of mesoscopic circuits (Chenet al., 1995;
Fanet al., 1998; Liet al., 1996; Wanget al., 2000a,b; Zhanget al., 1998). How-
ever, Louisell’s result is obtained atT = 0, and the Joule heat effects have not
been taken into account. It is well known that electric currents in a circuit (not
superconductors) naturally produce Joule heat, and practical electric circuits are
always working at a finite temperature. There is no doubt that the study of quan-
tum noise of mesoscopic circuits at a finite temperature is very important both
theoretically and experimentally. Recently, Fanet al. have studied the quantum
fluctuation of a mesoscopic LC electric circuit at a finite temperature (Fanet al.,
2000). In this paper, we shall study the time evolution of a nondissipative meso-
scopic RLC circuit, and employ thermal field dynamics (TFD) theory (Takahashi
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and Umezawa, 1975) to study the quantum fluctuation of the system at a finite
temperature.

1.1. The quantization of a mesoscopic RLC circuit

For a nondissipative RLC circuits, the classical equations of motion, as a
consequence of Kirchhoff’s law, read (Wanget al., 2000a)

L = d2q

dt2
+ R

dq

dt
+ q

C
= ε(t), (1)

whereq(t) is the charge of the RLC circuit,R, L, andC stand for the resistance,
inductance, and capacitance, respectively, andε(t) is the electromotive force. The
classical Hamiltonian is given by

H = p2

2L
+ R

2L
(qp+ pq)+ q2

2C
− qε(t), (2)

where p = L dq
dt . It is easily seen that Eq. (2) is analogous to a harmonic oscil-

lator. According to the standard quantization method, we quantize the system by
identifyingq and p as Hermite operators and imposing the commutation relation
[q, p] = i . Therefore Eq. (2) represents a quantized harmonic oscillator.

In order to diagonalizeH , we introduce the following unitary operatorU :

U = exp

(
i R

2
q2

)
. (3)

By means of the operator formula

eλXY e−λX = Y + λ[X, Y] + λ
2

2!
[X, [X, Y]] + . . . , (4)

we have

H ′ = U−1HU = p2

2L
+ 1

2
Lω2q2− qε(t), (5)

whereω = ω0

√
1− R2C/L, ω0 = 1/

√
LC is the resonance frequency of an LC

circuit without the resistance. Letting

a =
√

Lω

2

(
q + i

Lω
p

)
(6)

and

a+ =
√

Lω

2

(
q − i

Lω
p

)
, (7)
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Eq. (5) can be rewritten as

H ′ = ω
(

a+a+ 1

2

)
+ V(t)(a+ a+), (8)

where

V(t) = − ε(t)√
2Lω

. (9)

It can be proved that the time evolution operatorUs(t, 0) corresponding toH ′ is
given by (Fan, 1997)

Us(t, 0)= exp(−iωa+at) expb−i (η∗a+ + ηa)c. (10)

Here we have omitted a phase factor,

η(t) =
∫ t

0
V(τ ) exp(−iωτ ) dτ (11)

Therefore, the wave function of the system at timet is given by

|ψ(t)〉 = UUs(t, 0)|ψ(0)〉. (12)

2. QUANTUM FLUCTUATION OF THE SYSTEM

We now study the quantum fluctuation of the system at finite temperature.
The effect of temperature can be introduced in terms of the TFD theory, which was
invented by Takahashi and Umezawa (1975). In TFD one associates (a, a+), acting
on a Hilbert space, with thermal freedom operators (ã, ã+) in the extended Hilbert
space (a fictitious space). The operatorã andã+ obey the following commutation
relation:

[ã, ã+] = 1, [ã, a] = [ã, a+] = 0 (13)
The ensemble average of an operator A defined in the original Hilbert space

〈A〉 = z−1(β) tr(A e−β H ), z(β) = tr(e−β H ), (14)

can be calculated as a pure state (so-called thermal vacuum state) average, namely

〈A〉 = 〈0(β)|A|0(β)〉, (15)

whereβ = (kT)−1 andk is the Boltzmann constant. Takahashi and Umezawa have
proved that at finite temperatureT the thermal vacuum state|0(β)〉 for a harmonic
oscillator is given by (Takahashi and Umezawa, 1975)

|0(β)〉 = S(θ )|00̃〉 = sechθ exp(a+ã+ tanhθ )|00̃〉, (16)

where the thermal operatorS(θ ) is

S(θ ) = expb−θ (aã− a+ã+)c, (17)

tanhθ = exp
(
− ω

2kT

)
. (18)
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We now suppose the initial state of the system is in two-mode thermal vacuum
state

|ψ(0)〉 = |0(β)〉 = S(θ )|00̃〉. (19)

Then the wave function of the system at timet is given by

|ψ(t)〉 = UUs(t, 0)|0(β)〉. (20)

With the help of Eq. (4), we have

S−1(θ )aS(θ ) = a coshθ + ã+ sinhθ , (21)

U−1
s aUs = a eiax + z, z= −iη∗(t) e−iax, (22)

U−1 pU = p− Rq. (23)

From Eqs. (21)–(23) we obtain the averages and the mean-square values of the
chargeq and its conjugate variablep

〈q〉 =
√

2

ωL
Re(z), (24)

〈p〉 =
√

2ωL Im(z)− R

√
2

ωL
Re(z), (25)

〈q2〉 = 1

2ωL
[4 Re2(z)+ cosh(2θ )], (26)

〈p2〉 = 1

2
ωL[4 Im2(z)+ cosh(2θ )] + R2

2ωL
[4 Re2(z)+ cosh(2θ )]

− 4RRe(z) Im(z). (27)

Therefore, the fluctuations of the chargeq and its conjugate variablep are

〈(1q)2〉 = 〈q2〉 − 〈q〉2 = 1

2ωL
cosh(2θ )

= 1

2ω0

√
L2− R2LC

coth(ω/2kT), (28)

〈(1p)2〉 = 〈p2〉 − 〈p〉2

= 1

2
ωL cosh(2θ )+ R2

2ωL
cosh(2θ )

= L

2ω0C
√

L2− R2LC
coth(ω/2kT), (29)

whereω0 = 1/
√

LC.
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From Eqs. (24)–(29), we can draw the following conclusion:

(1) The averages of the chargeq and its conjugate variablep depend only
on parametersz, and have nothing to do with temperatureT . Since the
parametersz is related to the sourceε(t) by Eqs. (9) and (22), we can
obtain the conclusion that the averages of the chargeq and its conjugate
variablep depend on the concrete form of the sourceε(t).

(2) The mean-square values of the chargeq and its conjugate variablep are
dependent on both the parametersz and temperatureT .

(3) The quantum fluctuations of the chargeq and its conjugate variablep are
independent on the parametersz, i.e., they have nothing to do with the
concrete form of the sourceε(t).

(4) From the property of function coth(x) we can see that the quantum noise
of a nondissipative mesoscopic RLC circuit increases with the rising
temperatureT and resistanceR (for fixed L andC).

Letting R= 0, we obtain the quantum fluctuations of the chargeq and its
conjugate variablep for an LC circuit

〈(1q)2〉 = 1

2ω0L
coth(ω0/2kT), (30)

〈(1p)2〉 = 1

2ω0C
coth(ω0/2kT). (31)

It is easily seen that the quantum fluctuations of the chargeq and its conjugate
variablep for an LC circuit are smaller than that for an RLC circuit.

3. CONCLUSION AND DISCUSSION

In short, we have studied the quantization of a mesoscopic RLC circuit and
discussed its time evolution. By means of the TFD theory we have studied the
quantum fluctuation of the system at a finite temperature. The results show that
the quantum noise of a nondissipative mesoscopic RLC circuit increases with the
rising temperatureT and resistanceR (for fixed L andC). Although both the
averages and the mean-square values ofq and p are dependent on the concrete
form of the sourceε(t), the quantum fluctuations ofq and p have nothing to do
with the concrete form of the sourceε(t).
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